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DEBLURRING GAUSSIAN BLUR

Robert A. Hummel
B. Kimia
Steven W. Zucker

Abstract

* Gaussian blur, or convolution against a Gaussian kernel, is a common model
for image and signal degradation. In general, the process of reversing
Gaussian blur is unstable, and cannot be represented as a convolution filter
in the spatial domain. If we restrict the space of allowable functions to poly-
nomials of fixed finite degree, then a convolution inverse does exist. We
give constructive formulas for the deblurring kernels in terms of Hermite
polynomials, and observe that their use yields optimal approximate deblur-
ring solutions among the space of bounded degree polynomials. The more
common methods of achieving stable approximate deblurring include restric-
tions to band-limited functions or functions of bounded norm.

1. Introduction

Given an image or signal, the realization of any system for processing it must
introduce some amount of degradation. Since there may be several stages each con-
tributing to the degradation, the composition is often modeled as a Gaussian blur-
ring operation. We consider spatially invariant Gaussian convolution defined as fol-
lows. For a bounded measurable input function f(x) defined for xeR", then the
observed blurred output is given by

h(x) = [ K(x—E,1)f(E)dE,

where
K(.",I) = '—1,—9_““:/4[.
(4m1)n'?
and 1 is a fixed positive value parameterizing the extent of the blur. We wish 1o
estimate f(x) when only h(x) and the amount of blur 7 are known.

It would be especially nice to formulate deblurring as a convolution operation,
so that

=D, *h

In general, a universal deblurring kernel Dox,r) does not exist. However af sutt-
cient restrictions arc placed on the domain of permissible functions f, then deblur-
ring kernels can exist,

Our interestn deblurning is motivated by two concerns. First, deblurring as ot
stenificant practical importance I many mmage Processing systeme, ter example e
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DEBLURRING GAUSSIAN BLUR

computerized tomography [1}. There are also applications in physiological optics,
such as the de-focusing that automatically takes place for objects outside the depth
of field of an accommodated eye.

A second motivation is provided by a desire to study stability of image
representations. The mathematical analysis of an image representation must include
a study of the continuity and stability of the transformation. Reconstruction methods
are particularly useful for studying the stability. While blurred versions of an origi-
nal signal form a classical unstable representation, many intermediate-level transfor-
mations of image data nonetheless involve some degree of filtering by blurring. For
example, representations involving zero-crossings of Gaussian-filtered Laplacians of
images [2], as well as many other pyramid schemes [3,4,5,6], involve Gaussian
blur. Instabilities in the representation may not be important if approximate or
pseudoinverse reconstruction methods (see, e.g., [7]) can be found that make expli-
cit the assumptions concerning the input data. In this paper, we present an
approximate-inverse method involving polynomial approximations.

2. The Heat Equation

2.1. Diffusion

There is a fundamental connection between Gaussian blurring and the heat
equation. Consider a rod of infinite length onto which an impulse of heat is placed.
As time evolves, the heat will diffuse and the original impulse will spread out. By
elementary physics, the resulting distribution will approximate a Gaussian whose
width depends on the elapse time ( see, e.g., the Feynman lectures, (8]). By super-
position, the model for the temperature distribution along the rod at any given time
is the initial temperature distribution convolved with a Gaussian. The diffusion pro-
cess effectively convolves the initial distribution by a Gaussian whose spread
depends on how much time has evolved. This is the physically realized solution to
the heat equation, which can be formulated as follows ( [9]). Given f(x) piecewise
continuous and bounded, find h(x,1) bounded and C? for 1>0 satisfying

%(XJ) = Ah(x,1), xeR", 1>0;

h(x,n)=fixg) as (x,1)=(xg,0), xgeR", t>0.

We denote the operator that takes fto h(-,1) by Q,, i.e., h(x,0) = (3,N(x). The
solution is given by

(N (x) = [ KO—x0f()dy,

where K is as defined before. When restricted to a Hilbert space such a-
L2(IR™), £, becomes a symmetric bounded linear operator. We will generally inter-
pret f(x) as an image.

The space of functions that can be blurred in this way s very large  Indecd,
the condition that fix) is bounded can be weakened. The solution s still given b
convolution against the “'source kernel™ K(x, 1), [10], h(-,1) = K(-,0)*f The <ource
kernel is the fundamental solution to the heat equiation on the unbounded does
IR™  We also note that the blurring operator satisfies a semigroup property

11 a function fix) has been blurred for some time 77 by €2, and the resuliens
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function is blurred by {),,, the end result is the same as blurring f(x) for a time
t1+15. Thatis, .00, = Q,,,. The two Gaussian blurring operators, each of which
may have its own physical justification, results in one composite Gaussian operator.
Indeed, by the central limit theorem, other blurring operators will also compose into
approximate Gaussians when iterated.

2.2. Deblurring

Deblurring is the inverse problem to blurring, and can be modeled as a diffu-
sion process running backwards in time. Formally, the problem of reconstructing
f(x) given a blurred function h(x) and a blurring amount ¢>0 is the inverse heat
equation problem, and poses technical difficulties not present in the forward heat
equation problem.

First, finding an inverse to {), presupposes that {}, is one-to-one. In fact, the
blurring operator is one-to-one providing minor restrictions are placed on the
domain of ;. However, without certain growth restrictions, it is possible to find
distinct functions f and f satisfying Q,f = Q,f, (see {11]). Second, a solution f to the
problem ,f = h, given h, exists only if & is sufficiently smooth. In general, an
inverse can not be found, and even if h is sufficiently smooth, an arbitrarily small
change can destroy the smoothness. John [12] discusses the technical conditions
needed for the existence of an inverse. Finally, in a general function space the
deblurring problem_is horribly ill-conditioned. This means that there can exist pairs
of functions f and f that are arbitrarily far apart whose images under (), are arbi-
trarily close. The prototypic example is f(x) = Asin{(wx) and f(x)= 0 in one space
dimension. Then (£,f)(x) = Ae ~““'sin(wx), which for w large can be very close to
Q,f=0.

Deblurring can be understood somewhat better in terms of the Fourner
transform. If we denote the Fourier transform of a function g(x) by g(w), then the
blurring operator (1, is a multipliecr operator given by

(N () = e 'f(w).

By means of this formula, {}, can be extended to operate on the class of temperate
distributions S’ of Fourier transformable distributions [13]. In particular, Q,f s
defined for any polynomial f. Further, the formula shows that (], is one-to-one on
any class of Fourier transformable functions. Moreover, our earlier observation

|

4
<
3

that deblurring can not generally be represented by a convolution kernel can be :.:
observed from the formula, since although oN
-

- A AL

flw) = e h(w), g

_ . . . Wi L . %

a general convolution formula is not possible since e“”" is not the Fourier trandform N
of any tempered distribution B
4 1

These difficultics would tend to make one pessimistic about accomplishiny ::j

\.

image deblurring, and in particular about discovering deblurring kernels. However,
deblurning 1s a common operation, and v typically accomphished by giving the prob.
lerm a variational formulation, which can lead to a well conditioned problem We
describe several variational formulations in the next section, and present deblurniny
kernels for polvnomial domuns ain the subseguent section

g " ,l“'._l'.ﬂ.'ifv.
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DEBLURRING GAUSSIAN BLUR

3. Variational Formulation

We choose a normed space N and a closed convex subset M C N so that {),
may be regarded as an operator {}, : M - N, for all 1=0; (note that {}g is simply the
identity operator.) We may then pose the deblurring problem in the following
form:

Given h€N, t>0, find f€ M minimizing ||Qf — A||.

If Q, is one-to-one and onto over M, then the solution f given h is precisely the
inverse image of h under {},, so that the minimization gives a zero norm. In gen-
eral, however, M is restricted in such a way that {), maps into N, and so the solu-
tion fis a pseudoinverse of h.

Difficulties arise because the operator ), on the domain M is in general ill-
conditioned. There are various approaches that one can take to find a good
deblurred signal f stably from a given h. A standard approach is to restrict M to a
sufficiently small set. We mention five possibilities, and our subsequent treatment
will use one of these approaches (the second one) as a point of departure.

() N=1L% and M = {feM I}(u')) = 0 for |w|>p}, for some fixed constant p.
Restricting to the space of band-limited signals (with a specified cut-off) allows
stable deblurring of a blurred signal 4 by means of the formula

- B e“’:"‘h‘(w) |lw|=p
) = o lw|>p-

The function f can also be written as a convolution against h: f = K,*h, where
the Fourier transform of K is e“’"4 for |w|=<p, and zero elsewhere. This is a
standard method for deblurring, although it is well known that K, “rings’’ over
a large spatial extent.

In a discrete setting, a similar (discrete) convolution deblurring kernel can be
formulated, yielding appropriate band-limited discrete approximations to origi-
nal signals. It turns out that this method is completely equivalent to computing
a pseudoinverse of the matrix representing the blurring operator by means of a
singular value decomposition.

(2) N = Lz(e"‘zdx). and M = Polynomials of degree N or less (fixed N), which
we will denote by Py. We will see (in the next section) that (1, is closed on Py
Thus the pseudoinverse problem can be solved as follows. First, A is projected
onto Py by the linear orthogonal projection operator of N into Px. The result-
ing polynomial is deblurred by the convolution kernel Dy to be defined in Sec-
tion 4 to yield the solution polynomial f.

The problem with this possibility s that images are typically far more generu!
than polynomials of degree N Thus to get even moderately reasonable deblur-
ring, N has to be very large, and then applying Dx becomes difficult and
numerically unstable. Although we will make use of the deblurring kernels D¢
designed to deblur polynomials, our implementations (section §) are more gen-
eral than finding the pseudoinverse famong the class Py,

(W N LRy and Moo= {FEN ] 01 Thas situation, studied by John [12] deads
to partly-stable deblurring, as long as the given function k£ v sufficiently
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"blurry.” Specifically, suppose T>¢, and h = flrg, some g€ M. Then the prob-
lem is to find f€M such that Q,f = h. John studies bounds on the deblurring
error, where deblurring is accomplished by exactly the same linear process to
be discussed in in the next section. That is, he constructs an approximation f to
f by convolving A with a scaled version of the kernel Dy given in Section 4. The
result is that the error in reconstructing f, ||f — f||, can be controlled to depend
~~ntinuously on the error in representing h. That is, small errors in represent-
ing h can lead to errors in representing f, but the maximum size of the errors
can be bounded. Interestingly, unlike customary notions of stability, the

dependence is not linear.!

) N= Lz(IR). and M = {f| 0sf<sM}, for some fixed M. With M = =, this is
nearly the same as case (2). Now, however, we consider the possibility of non-
linear deblurring methods. Peleg [14] has implemented a deblurring scheme
base on a conjugate gradient iterative minimization of ||Q;f — h||, constrained
by f€ M. The constraints are handled, in Peleg’s case, by remapping the inter-
val [O,M] to [ - =,»], and then solving an unconstrained minimization prob-
lem. By limiting the number of iterations, they obtain only an approximate
solution, although the results look very good. They don’t study the stability
question, but one would expect the same kind of nonlinear stability for partial
deblurring as discovered by John.

(5) N=L*R), M ={f€L?|||f]|sM}, some fixed M. This case is treated by
Carasso et. al. [15]. They give a relatively simple nonlinear deblurring
method, making use of Fourier transforms, to solve the variational problem.
The method is not iterative. They also study the stability, and obtain the same
kind of stability estimates (for partial deblurring) as John.

An alternative approach to obtaining stable deblurring is to begin by specifying
the algorithmic form of the deblurring method, and to optimize with respect to a
statistical norm. For example, we can insist on a convolution kernel for deblurring,
and seek a kernel k minimizing

E{|[k+Qf - fil}.

where E{-} is an expectation operator which presupposes some distribution of
unblurred functions f. Other operators, such as worst-case norm, are also possible.
Such methods are studied in the province of information-based complexity[16].

I"-

If the distribution of f's is concentrated on, or limited to, polynomials in Py, :*-.
then all the functions Q,f will also be polynomials, and we expect that the optimal S
deblurring kernel k will be the one that deblurs polynomials in Py (namely, Dy, :.“-'
»

given in the Theorem of Section 4). If the distribution consists of functions that are
well-approximated locally by polynomials in Py, the optimal kernel won't change
much.

ol K

o
In the next section, we present the kernel Dy such that Dy*Q),f = f for all Iy
f€Pxy., (with 1 = 1/4). Since {1, is closed on Py, this kernel may be used to deblur "::
-
! Suppose that h is the representation of h, and that j is the spproximate reconstruction of f using A Usua)
notions of stability would require jif—f < th—h | using appropriate (and perhaps different) norms. The non- e
hinear stability that is used in this case, however, asserts that |'f—f <( i h—h!** for some integer k=1 Thus :
in order to achieve an sccuracy of ¢ in the reconstruction of f, it 1s necessary to represent A to an socuracy of _,\
(1:C)e*. This might be viewed as poivaomial stabiliny N
“
..\
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DEBLURRING GAUSSIAN BLUR

all polynomials h € Py. However, motivated by John's studies (case (2) above) and
the comments on optimal kernels, we will apply Dy to functions A that are not in
fact polynomials.

The results may be analyzed in terms of local approximations by polynomials.
Suppose that the initial unblurred data fis written

f=p te,
where p €Py and € is an error term. Specifically, p should be the projection of f
onto Py in the space L2(e” x? dx), so that p is a good polynomial approximation to f
near the origin, but may differ from f significantly away from the origin. Applying
the deblurring kernel Dy to the blurred version of f yields the approximate deblur-
ring
}= p + DN'Q‘G.
Thus
f=f=€—DyoQe,

whose norm (in L2(e "*’dx)) can be bounded by C-|l€||]. Since the norm measures
errors only locally, the result is that we have stable, accurate deblurring for signals
that are well-approximated locally by polynomial data.

4. Polynomial Domains

The monomials {1,x, - - - ,x¥} form a basis for Py. If this basis is orthonor-
malized with respect to the inner product

(f.8) = f_: f(x)g(x)e ™% dx,

then the basis of Hermite polynomials {H¢,H,...,Hy} result. The Hermites can be
represented explicitly:

3 lns2] . gzx2n—2m
H,.(X)_n!"'Z:O(—I) m!(n—2m)! "’

or by the Rodrigues formula:
= d”

"

Hy(x) = (= 1)"e* (e“:),

Without loss of generality, we will specialize to the case r = 1/4, and denote
€)1,4 by T. We now prove the aforementioned

Observation 1: T is closed on Py.
Proof: We will show that TH,€P, for n<N.
VT (TH ) (v) = f_:r"“_”:H,,(,r)d\'

* R d -
f N N e "

i da”
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Hummel, Kimis, and Zucker

n—-1

(e ~**)dx

= 2" e e (-1 L

dxn—]

= V@ 2(TH,-1)(»);

Solving this recursion relation, using THo = 1, we have
(TH)(x) = 2"x". =

As a result of Observation 1, T is an isomorphism of Py. The inverse of T on
Py is clearly given by

N , N a;
T3 (aix’) = 2 7Hi(x).
i=0 i=02

Our main result is that T~ restricted to Py can be represented by a convolu-
tion with an explicit kernel Dy/x):
Theorem: For f€Py and ¢ = Tf, then
f=Dy*g
where

. IN72) -t
Dy(x) = e~ * —<—)—H (x).
N 2 Vet

We will give a proof below using direct integration (as opposed to using Fourier
transform distributions). Note, however, that Dy(x) is not the unique function
representing 7”1 on Py. In general, the kernel can be translated by any function
which yields a zero convolution against Py. This includes all functions of the form

e"zH,,(x). n>N.
The stated kernel is unique among the class of functions of the form e“‘:P(x),
where P(x) is a polynomial of degree N.

It is interesting to compare the form of Dy(x) with standard enhancement
filters. For example, for N = 3,

e (1-xY)=

2 ] 1 4d*
D3(x) = o
3 = = Vo 2 di?

Thus

2
Dy*g = []—idleg.

which is a not uncommon high emphass filter (see, ¢ g . the papers by E. Mach
in [17]) and [18]. In Figure 1, we display plots of Dy for several values of A"
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2
1.5 4
1 4

Ds
0.5 4
0 —
-0.5 <
T I T
—4 -2 0 2 4
Figure 1d

Figure 1. The deblurring kernels Dy, for N = 5,9, and 13 for Figures la, 1b, and
1c respectively. Figures 1a, 1b, and 1c are drawn on the same vertical scales. Fig-
ure 1d shows the deblurring kernel D5 (the same as figure 1a) with a different verti-
cal scale to emphasize the structure. The corresponding blurring kernel is
(1/Vw )e “*", so that one standard deviation o is equal to x= =V2/2.

The proof of the theorem depends on several lemmas.

Lemma 1:

€ 5 0, n Odd.

A, = f %_e"'x"dx = ,
TtV —’L—‘. n even.
2"(n/2)!
Lemma 2:
x - 0. p<A,
C2u,2p = f_x \/11_;(’_‘ H;k(r)_rz”d.r = ()

S . =k
22”"‘(;)~klf r

K,
<

|
.
A
.

Lemnma 3: >
For n=k, =1
-

= 0. koodd P

di = [ Dy(xix*de= : -

- k N , -

(-t . AoCNeD y

25k 2 ‘

Proof: For &k odd. and using the definition of Doy, we obsenve ot Dy o
an odd integrable function, and so integrates to sero bFor & 2p A
..

F

Page 9 .
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@ w® [lej 1N
fDN(x)x"dx = J'e" —(—ll—Hzi(x)xzpdx

- [-0 Vr il2
IV72) -1 i 2p)!
‘EL—LM:F L.,) 2_(2,-”) ,
j=0 12 j=0 120 2°P74(p—i)!

=pté&__p! i = L_aL - _
2pp|ﬁ:ol’(p_‘)'( Di1/2)P~ ( 1/2)P 1)p2(2P22 -

Proof of the Theorem: From the formula for TH, computed in Observation 1, it
suffices to show that Dy * (2"x"*) = H,(x),n = N. We have

(Dn * 2°x™M)(y) = fun 2"Dy(x)(y —x)"dx = I 2"D~(x)2(—1)" [ ] nkekdy
- - i=0

- 2! kom-ky o (=1)*2" pym£2m! o -2m
= Z - DY "'2<2m)'<n 2myt ¢ D7 Qe

m=0

= __i:;LL___ -2m_ n-2m _ . "
,..Eo'"'(n 2m), y Hn(y).

The theorem could have been proved using the convolution theorem and by
computing the Fourier transform of Dy(x). Although we have not taken this
approach, we will nonetheless compute Dy in order to show that the multiplier for
Dy approaches, pointwise, the inverse of the multiplier for the operator T, i.e.,

Observation 2:
Dx(w) - e“"’* pointwise as N~ .

Proof:
- IN/2) (—1 k
Dyw) = 3 = s Fle ™ Huo)w),
K=o Va2
where 7 stands for the Fourier transform operator. Now,
2k

2 d
?{(—w'dru

PN XXX

7 [e":H:"(x)](w)

e ) (w) = (iw)* Ve e

Thus
- IN 2] _q\k
Dpy(w) = —(7_—1-)‘7 (- Nrw\/me v ¢
k-0 \’ﬂk':
k
e (e
:1»‘| 2
Hence
L_H‘.\ {)A\v(un D wew DL pw i g
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It is interesting to observe that the kernel Dy is a multipligr where Fourier
Transform is thg Taylor series approximation to the function e“"’2, multiplied by
the window e ~“"/4,

Also as a consequence of observation 2, we see that Dy(x) does not converge
pointwise to any function as N - o, since otherwise the Fourier transform of that
function would be e“”’4, which is impossible. Dy(x) does converge in L2(e~*'dx),
but that does not imply pointwise convergence to any function. We accordingly
have stable deblurring when using the kernels Dy(x), where stability is measured in
terms of deviation from a polynomial of degree N, and the L?*(e~*'dx) norm is used
as the metric.

5. Higher Dimensions
The Gaussian blur operator is given by

Tf(x) = Jo,m"2e = f(y)dy.

Due to the separability of the kernel and Fubini’s theorem, T can be decomposed
into n iterated blurrings:

T=TyeTae - oT,

o« )| —(xi=yi)?
(T'f)(x) = f_m \/;e (xi—yi) f(xlv SRR VSRR ,x,,)d)‘;
Consider a polynomial in R":
fix) = 3 aqax°®
lajsN
a = (al’az, P ’an)’ Q,‘GZ, Q,‘ZO, |al = Euio x® = X?l PN X:",

For fixed n, the function of one real variable

80y = flxy, » =y, "0 0 Xp)
is a polynomial of degree no greater than N, so
Dy *(Tg) = ¢

where T is the standard one dimensional blurring operator (2.1). Combining we
find that

f(x) = [ Dn(y1Dx(y2) . . - Dr(ya)(TH(x=¥)dy

for any multivariate polynomial f(x). Thus deblurring of blurred polyvnomials of
degree N can be accomplished by convolution against the kernel

Dy(x) = Da(xIDx(x2) . Dyiay,).
Thus the situation in higher dimension< s similar to the one dimensvional case

The deblurring convolution kernel is separable, and will be of the form ¢ " * Py,
where P(x) is a polynomial of degree nN in v (IR, Figure 2 shows a plot of DY for

n =2 N =3 Using a separable kernel tor deblurning has computations’ advan-
tages, but can lead to artifacts 1in diaponyl directions when apphied to certam mages
Page 11
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DEBLURRING GAUSSIAN BLUR

We will see these effects in the next section.

6. Experiments in Deblurring

We experimented with the deblurring kernels Dy using both modest and large
amounts of blur. An original image (Figure 2a) has eight bits of grayscale informa-
tion digitized on a 480 by 512 grid. The image is regarded as a piecewise constant
function of two continuous real variables, and blurred by convolution against the
Gaussian (1/m)e™*" 77", where for Figure 2b the interpixel spacing is taken to be
h = .15 (corresponding to a standard deviation o = 4.7 pixels). Images (2¢), (2d),
and (2e) show the results of applying the deblurring kernels Ds, Dy, and D,
respectively. The diagonal artifacts arise due to the use of separable kernels, and
become more pronounced for higher N. The computations were done with 12-bit
fixed point arithmetic on a VICOM image processing computer. The results by
using floating point arithmetic on a general purpose computer (a VAX) were essen-
tially identical, although the effects of the diagonal artifacts is very slightly reduced.

For comparison, we display in Figure 3 the results of convolving the blurred
image in Figure 2b by a kernel K, whose Fouyier transform is a truncated version
of e*’. The kernel size was arbitrarily limited to 100 by 100 pixels, and p was
chosen small enough so that the kernel elements were considerably smaller on the
periphery of the kernel. If p were chosen too large, the magnitude of the kernel
elements decay extremely slowly. Clearly, deblurring by the kernel Dy is far supe-
rior, due to the elimination of the sharp cut-off in its spectral properties. The diffi-
culty with a sharp cut-off is that it leads to ‘‘ringing"” of the spatial kernel, and evi-
dence of ringing can be seen in the example of deblurring.

In Figure 4, we show the blurred image using an interpixel distance of h = 0.1
(corresponding to a standard deviation o = 7.1 pixels). The blurring kernel, to
beyond three standard deviations, is a roughly 50 by 50 mask. Figure 4b shows this
image deblurred using the kernel Dy;.

The experimental results show that deblurring certainly improves blurred
images, even with the given inherent lack of stability. Better results may be obtain-
able with nonlinear or stochastic techniques, although our experiments certainly
demonstrate the human visual system’s sensitivity to visual quahity of deblurrings.
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Figure 2. An original imape (2a4) digttized to 450 by S12 pixels  In (2b), the image
has been blurred by a Gaussian (1:mje ', with the anterpixel distance fo-- O 15
Figures (2¢), (2d), and (2¢) show Figure (b)) restored using the deblurring hernels
De, Dq,and D3 respectivehy
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Figure 3. The blurred image in Figure (2b) deblurred using a kernel whose Fourier
Iransform is a truncated version of the deblurring multiplicr. The result s a pseu-
doinverse under the blurring operator. Difficulties arise because the deblurning ker-
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Figure 4a
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Figure 4b

Figure 4. The original image blurred by a Gaussian with interpixe! distance
h=0.10, and the result of deblurring using the kernel D ;.
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